
Herron Tool I 1

Patrick Herron
Tool I

Due 05 October 2004

Summary

The author of the present study created and used ten sentences for the purpose of testing
the performance of three different language parsers. Sentences were chosen on the basis
of a set of features typically troublesome for parsers: local and global ambiguities,
misspellings, ill-formed grammar, non-sequitur, conversation, deeply embedded clauses,
technical jargon, and parentheticals. The overall theme of the present inquiry was to see
whether the parsers somehow capture semantic information and translate that information
into augmenting structural analyses of the given statements. The orientation of the
present approach was from that of the human language user: it was assumed that the
human use of language is the gold standard to which machine-based language parsing
should be held.

Sentences used

1. Flying planes made her duck.
2. They read with me.
3. Dark shining ghosts vastly drink cities.
4. John is going probably to home.
5. i drov home frm th licor stor.
6. And so Billy, he, like, he totally didn't, you know?
7. You don't say.
8. Government is number.
9. Short-lived like a machine that is used but not good enough whilst promising to

be better, an enduring work must be built like a machine full of shortcomings.
10. During the automatic customization (or training) of MSR-MT (see figure below),

pairs of corresponding source and target sentences are parsed to produce graph-
like structures called Logical Forms (LFs).

Parsers used

Memory-based shallow parser demo:
http://ilk.kub.nl/cgi-bin/tstchunk/demo.pl

EP41R Parser
http://www.cs.kun.nl/agfl/ep4ir/try.html

Connexor machinese for English (syntax tree output)
http://www.connexor.com/demos/syntax_en.html

Herron Tool I 2

Selection Justification

1. Flying planes made her duck.

"This example is a globally ambiguous sentence; that is, the entire string of words has
more than one structure associated with it.”1

I plucked the above example because it appears to be a fine example of the way one
sentence can have complexes of meaning. Context is the only way to possibly pick one
possibility over another. The present example is a difficult sentence for a parser to
handle.

I find there are at least six central ways of interpreting the above in a 3 x 2 matrix:

Flying planes Made her duck
Her flying of a plane manufactured her rubber duckie.
Her flying in a plane encouraged her to squat.
Planes that are flying above

1. Her flying of a plane manufactured her rubber duckie.
2. Her flying of a plane encouraged her to squat.
3. Her flying in a plane manufactured her rubber duckie.
4. Her flying in a plane encouraged her to squat.
5. Planes that are flying above manufactured her rubber duckie.
6. Planes that are flying above encouraged her to squat.

Many other possibilities can be suggested though they tend towards more and more
remotely possible worlds. It seems that only 6 seems likely, while 4 and 5 are only
tenuous possibilities. We therefore want to see a parsing that favors 6, and maybe tries to
pass off 4 or 5 instead.

We want to see something like:
[NP [ADJ Flying] [N planes][VP [V made] [OBJ her] [V INF duck]

where the “duck” is treated as the infinitive form, as in “Judy made Bill cry.”

Will these parsers do a good job resolving the ambiguities of constituency?

1 in Natural Language Processing in Prolog/Pop11/Lisp, Gerald Gazdar &
Chris Mellish; see http://www.informatics.susx.ac.uk/research/nlp/gazdar/nlp-in-prolog/ch01/chapter-01-
sh-1.2.html

Herron Tool I 3

2. They read with me.

"Read" is ambiguous with respect to tense (is it present or past tense?). The global
ambiguity example was a difficult test, and I expect none of the tools will have fared well
with it. The present example contains a simple word-level ambiguity and should be at
least easier to handle.

3. Dark shining ghosts vastly drink cities.

The present example tests a parser’s ability to handle well-formed structures containing
nonsense words—ultimately a syntactically correct but semantically troublesome
sentence. The present example was inspired by Chomsky’s famous example, “colorless
green ideas sleep furiously.” I would have used Chomsky’s own example but I feared it
might risk an encounter with a “special case” written into the parser.

4. Sally is going probably to home.

With this example I wanted to choose an obviously ill-formed sentence, one that humans
(or, rather, perhaps only English speakers) simply cannot comprehend. In this case we
can understand it, but it reads so awkwardly that it is barely comprehendible.

What is an ill-formed sentence? "Much ‘naturally occurring’ text contains some or many
typographical errors or other errors. Industrial-strength parsers have to be able to deal
with these, just as people can deal with typos and ungrammaticality. Such a parser is
called a robust parser.”2

5 i drov home frm th licor stor.

I devised the following statement because of two overlapping linguistic phenomena that
do not prevent human comprehension: letter elision and misspelling. We tend to be able
to understand words that are missing their first or last letters, or are missing their vowels.
Also words that are spelled in a way more “true” to their phonetic spelling tend to be
understandable. We know that the above statement is the rather disturbing, given the
spelling, “I drove home from the liquor store.”

6. And so Billy, he goes, like, he was like, he totally didn't, you know?

While at lunch one day two weeks ago I overheard some students engaged in an energetic
conversation about their social lives. I was and continue to be amazed with the facility

2 from The Natural Language Processing Dictionary, Bill Wilson, 2004,
http://www.cse.unsw.edu.au/~billw/nlpdict.html#ill-formed

Herron Tool I 4

many a young American has with the words “like,” “totally,” “goes,” and the phrase “you
know.” We do not see such statements frequently in text though at some point, with the
growth of speech recognition software, we may see such text more often and may need to
be able to parse it. The crux of this statement is expressive (in Searle’s sense) and so
tests the facility of the parser to handle not only speech acts but also recapitulations: note
that the verb is revised by the speaker twice.

7. You don't say.

Another expressive, but a much simpler example than the previous. Here, we have a
transitive verb that is treated as if it is intransitive. It computes to the human listener, yet
it may fall outside the margins of what a typical NLP system might successfully parse.

8. Government is number.

I have no idea what it means. Maybe a parser might help me.

I picked the present example because it seems strange (inspired by something presented
earlier this semester from our guests from DAS in reference to a Sergei Brin paper:

We include the threesome "government," "is," and "number" because it
has the highest value of any triple of words. Like many of the correlated
triples, of which there are well over a million, this itemset is hard to
interpret. Part of the difficulty is due to the word "is," which does not yield
as much context as nouns and active verbs. In practice, it may make sense
to restrict the analysis to nouns and active verbs to prune away such
meaningless correlates.3

Specifically, the present example is a remnant not of human text but of machine text. I
wonder whether machine-generated text poses difficulties for natural language parsers.

9. Short-lived like a machine that is used but not good enough whilst promising to be
better, an enduring work must be built like a machine full of shortcomings.

- Bertolt Brecht, from "About the Way to Construct Enduring Works" (my translation,
though I wouldn't typically use 'whilst')

It's a strange phrasing, in English as it was in German, but in English it has the dramatic
oddity of Germanic verb latency (verbs in German tend to appear towards the end of
sentences) and with modification of the main part of the sentence through a phrase

3 Sergey Brin, Rajeev Motwani, Craig Silverstein, “Beyond Market Baskets: Generalizing Association
Rules to Correlations.” SIGMOD 1997, Proceedings ACM SIGMOD International Conference on
Management of Data, May 13-15, 1997, Tucson, Arizona, USA

Herron Tool I 5

repeating "like". Also, here's an opportunity to test an old word like “whilst.” The
present example also contains deeply embedded phrases: “short lived” modifies “an
enduring work”, and “short lived” is modified by a long subordinate clause with its own
subordinates.

10. During the automatic customization (or training) of MSR-MT (see figure below),
pairs of corresponding source and target sentences are parsed to produce graph-like
structures called Logical Forms (LFs).

This example is a grab-bag of sorts: a long complex sentence with different types of
parentheticals, with technical content, with ostensive information (a speech act) and with
meta-content (i.e., the sentence pertains to NLP).

Many of the above examples are quite difficult, but their difficulty will help in the present
effort to articulate the shortcomings of NLP parsers and illuminate opportunities for
improvement.

Results & Analysis

1. Flying planes made her duck.

Memory-based shallow parser demo:

Tagger output

Flying/NN planes/NNS made/VBD her/PRP$ duck/NN ./.

Chunker output
[NP Flying/NN planes/NNS NP] [VP made/VBD VP] [NP her/PRP$
duck/NN NP] ./.

Subject/Object Detector output

[NP1NP-SBJ;NP-OBJ Flying/NN planes/NNS NP1NP-SBJ;NP-OBJ]
[VP1 made/VBD VP1] [NP1

Object her/PRP$ duck/NN NP1
Object] ./.

Herron Tool I 6

EP41R Parser:

Parse tree for the most probable analysis:
segment
 sentence
 statement
 simple statement
 SVOC phrase
 opt circumstances
 subject(sing, third)
 NP(sing, third, nom)
 noun phrase(sing, third, nom)
 noun part(sing, third, nom)
 noun group(sing, third, nom)
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "Flying"
 VOC phrase(sing, third)
 verb group(trav, none, none, sing, third)
 verb form(trav, none, none, sing, third)
 LEX_VERBS(none, trav)
 VERBS(none, trav)
 "planes"
 pred adjectives
 pred adjective
 adjective
 LEX_ADJE(abso)
 LADJE(abso)
 ADJE(abso)
 "made"
 OC phrase(trav, none, none)
 object
 noun phrase(sing, third, acc)
 noun part(sing, third, acc)
 poss pron
 LEX_POSSPRON
 POSSPRON
 "her"
 noun part(sing, third, acc)
 noun group(sing, third, acc)
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "duck"
 particle(none)
 C phrase(none)
 opt circumstances
 period
 "."

Herron Tool I 7

Connexor machinese for English (syntax tree output):

 # Text Baseform Syntactic relation Syntax and morphology

1 Flying fly subj:>3 @-FMAINV %VA ING
2 planes plane obj:>1 @OBJ %NH N NOM PL
3 made make main:>0 @+FMAINV %VA V PAST
4 her she subj:>5 @OBJ %NH PRON PERS ACC SG3
5 duck duck obj:>3 @-FMAINV %VA V INF
6 . .

7 <s> <s>

Compare with “Judy made Bill cry.”

Text Baseform Syntactic relation Syntax and morphology

1 Judy judy subj:>2 @SUBJ %NH N NOM SG
2 made make main:>0 @+FMAINV %VA V PAST
3 Bill bill subj:>4 @OBJ %NH N NOM SG
4 cry cry obj:>2 @-FMAINV %VA V INF
5 . .

6 <s> <s>

Herron Tool I 8

2. They read with me.

Memory-based shallow parser demo:

Tagger output

They/PRP read/VBP with/IN me/PRP ./.

Chunker output
[NP They/PRP NP] [VP read/VBP VP] {PNP [Prep with/IN Prep] [NP
me/PRP NP] PNP} ./.

Subject/Object Detector output

[NP1
Subject They/PRP NP1

Subject] [VP1 read/VBP VP1] {PNP [P with/IN P]
[NP me/PRP NP] PNP} ./.

EP41R Parser:

Parse tree for the most probable analysis:
segment
 sentence
 statement
 simple statement
 SVOC phrase
 opt circumstances
 subject(plur, third)
 NP(plur, third, nom)
 noun phrase(plur, third, nom)
 noun part(plur, third, nom)
 noun group(plur, third, nom)
 pers pron(plur, third, nom)
 LEX_PERSPRON(plur, third, nom)
 PERSPRON(plur, third, nom)
 "they"
 VOC phrase(plur, third)
 verb group(trav, none, from|into|in, plur, third)
 verb form(trav, none, from|into|in, plur, third)
 LEX_VERBI(from|into|in, trav)
 VERBI(from|into|in, trav)
 "read"
 OC phrase(trav, none, from|into|in)
 particle(none)
 C phrase(from|into|in)
 instrument
 PP(with)
 opt adverbs
 LEX_PREPOS(with)
 PREPOS(with)
 "with"
 noun phrase(sing, first, dat)
 noun part(sing, first, dat)
 noun group(sing, first, dat)
 pers pron(sing, first, dat)
 LEX_PERSPRON(sing, first, dat)
 PERSPRON(sing, first, dat)
 "me"
 C phrase(from|into|in)
 opt circumstances
 period
 "."

Herron Tool I 9

Connexor machinese for English (syntax tree output):

 # Text Baseform Syntactic relation Syntax and morphology

1 They they subj:>2 @SUBJ %NH PRON PERS NOM PL3
2 read read main:>0 @+FMAINV %VA V PAST
3 with with com:>2 @ADVL %EH PREP
4 me i pcomp:>3 @<P %NH PRON PERS ACC SG1
5 . .

6 <s> <s>

3. Dark shining ghosts vastly drink cities.

Memory-based shallow parser demo:

Tagger output

Dark/JJ shining/VBG ghosts/NNS vastly/RB drink/VBP cities/NNS ./.

Chunker output
[NP Dark/JJ shining/VBG ghosts/NNS NP] [ADVP vastly/RB ADVP]
[VP drink/VBP VP] [NP cities/NNS NP] ./.

Subject/Object Detector output

[NP1
Subject Dark/JJ shining/VBG ghosts/NNS NP1

Subject] [ADVP
vastly/RB ADVP] [VP1 drink/VBP VP1] [NP1

Object cities/NNS NP1
Object]

./.

Herron Tool I 10

EP41R Parser:

Parse tree for the most probable analysis:
segment
 sentence
 statement
 simple statement
 SVOC phrase
 opt circumstances
 circumstance
 adjective
 LEX_ADJE(abso)
 LADJE(abso)
 ADJE(abso)
 "dark"
 opt circumstances
 subject(sing, third)
 NP(sing, third, nom)
 verbal noun phrase
 opt adverbs
 pOC phrase(prpl)
 participle(intr, none, none, prpl)
 verb form(intr, none, none, prpl)
 LEX_VERBG(none, intr)
 VERBG(none, intr)
 "shining"
 OC phrase(intr, none, none)
 C phrase(none)
 opt circumstances
 VOC phrase(sing, third)
 verb group(trav, none, none, sing, third)
 verb form(trav, none, none, sing, third)
 LEX_VERBS(none, trav)
 VERBS(none, trav)
 "ghosts"
 OC phrase(trav, none, none)
 object
 noun phrase(plur, third, acc)
 adverb
 LEX_ADVB
 LADVB
 ADVB
 "vastly"
 noun phrase(plur, third, acc)
 noun part(plur, third, acc)
 noun group(plur, third, acc)
 noun kernel(plur)
 premodifiers
 premodifier
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "drink"
 rest premodifiers
 noun kernel(plur)
 LEX_NOUN(plur)
 LNOUN(plur)
 NOUN(plur)
 "cities"
 particle(none)
 C phrase(none)
 opt circumstances
 period
 "."

Herron Tool I 11

Connexor machinese for English (syntax tree output)

 # Text Baseform Syntactic relation Syntax and morphology

1 Dark dark attr:>2 @A> %>N A ABS
2 shining shining attr:>3 @A> %>N A ABS
3 ghosts ghost subj:>5 @SUBJ %NH N NOM PL
4 vastly vastly man:>5 @ADVL %EH ADV
5 drink drink main:>0 @+FMAINV %VA V PRES
6 cities city obj:>5 @OBJ %NH N NOM PL
7 . .

8 <s> <s>

4. Sally is going probably to home.

Memory-based shallow parser demo:

Tagger output

Sally/NN is/VBZ going/VBG probably/RB to/TO home/VB ./.

Chunker output
[NP Sally/NN NP] [VP is/VBZ going/VBG probably/RB to/TO
home/VB VP] ./.

Subject/Object Detector output

[NP1
Subject Sally/NN NP1

Subject] [VP1 is/VBZ going/VBG probably/RB
to/TO home/VB VP1] ./.

Herron Tool I 12

EP41R Parser
Parse tree for the most probable analysis:
segment
 sentence
 statement
 simple statement
 SVOC phrase
 opt circumstances
 subject(sing, third)
 NP(sing, third, nom)
 noun phrase(sing, third, nom)
 noun part(sing, third, nom)
 noun group(sing, third, nom)
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "sally"
 VOC phrase(sing, third)
 verb group(intr, none, to, sing, third)
 LEX_TOBE(sing, third)
 TOBE(sing, third)
 "is"
 opt adverbs
 participle(intr, none, to, prpl)
 verb form(intr, none, to, prpl)
 LEX_VERBG(to, intr)
 VERBG(to, intr)
 "going"
 OC phrase(intr, none, to)
 C phrase(to)
 PP(to)
 opt adverbs
 adverb
 LEX_ADVB
 LADVB
 ADVB
 "probably"
 opt adverbs
 LEX_PREPOS(to)
 PREPOS(to)
 "to"
 noun phrase(sing, third, dat)
 noun part(sing, third, dat)
 noun group(sing, third, dat)
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "home"
 opt circumstances
 period
 "."

Herron Tool I 13

Connexor machinese for English (syntax tree output)

 # Text Baseform Syntactic relation Syntax and morphology

1 Sally sally subj:>2 @SUBJ %NH N NOM SG
2 is be v-ch:>3 @+FAUXV %AUX V PRES SG3
3 going go main:>0 @-FMAINV %VA ING
4 probably probably man:>3 @ADVL %EH ADV
5 to to @ADVL %EH PREP
6 home home pcomp:>5 @<P %NH N NOM SG
7 . .

8 <s> <s>

5 i drov home frm th licor stor.

Memory-based shallow parser demo:

Tagger output

i//FW drov//NN home/NN frm//NN th//NN licor//NN stor//NN ./.

Chunker output
[NP i//FW drov//NN home/NN frm//NN th//NN licor//NN stor//NN NP]
./.

Subject/Object Detector output

[NP i//FW drov//NN home/NN frm//NN th//NN licor//NN stor//NN NP]
./.

Herron Tool I 14

EP41R Parser

 Parse tree for the most probable analysis:
Warning: skipped unknown token "i" at pos 0

Warning: skipped unknown token "drov" at pos 2

Warning: skipped unknown token "frm" at pos 12

Warning: skipped unknown token "th" at pos 16

Warning: skipped unknown token "licor" at pos 19

Warning: skipped unknown token "stor" at pos 25

segment
 sentence
 order
 VOC phrase(sing, secnd)
 verb group(trav, none, on, sing, secnd)
 verb form(trav, none, on, sing, secnd)
 LEX_VERBI(on, trav)
 VERBI(on, trav)
 "home"
 OC phrase(trav, none, on)
 particle(none)
 C phrase(on)
 opt circumstances

Connexor machinese for English (syntax tree output)

Herron Tool I 15

 # Text Baseform Syntactic relation Syntax and morphology

1 i i @SUBJ %NH PRON PERS NOM SG1
2 drov drov attr:>3 @A> %>N <?> N NOM SG
3 home home attr:>4 @A> %>N N NOM SG
4 frm frm attr:>5 @A> %>N <?> N NOM SG
5 th th attr:>6 @A> %>N ABBR NOM SG
6 licor licor attr:>7 @A> %>N <?> N NOM SG
7 stor stor @NH %NH <?> N NOM SG
8 . .

9 <s> <s>

6. And so Billy, he goes, like, he was like, he totally didn't, you know?

Memory-based shallow parser demo:

Tagger output

And/CC so/RB Billy/NNP ,/, he/PRP goes/VBZ ,/, like/IN ,/, he/PRP
was/VBD like/IN ,/, he/PRP totally/RB did/VBD n't/RB ,/, you/PRP
know/VB ?/.

Chunker output

And/CC [ADVP so/RB ADVP] [NP Billy/NNP NP] ,/, [NP he/PRP NP]
[VP goes/VBZ VP] ,/, [Prep like/IN Prep] ,/, [NP he/PRP NP] [VP
was/VBD VP] [Prep like/IN Prep] ,/, [NP he/PRP NP] [ADJP totally/RB
ADJP] [VP did/VBD VP] n't/RB ,/, [NP you/PRP NP] [VP know/VB
VP] ?/.

Subject/Object Detector output

And/CC [ADVP so/RB ADVP] [NP Billy/NNP NP] ,/, [NP1
Subject

he/PRP NP1
Subject] [VP1 goes/VBZ VP1] ,/, [P like/IN P] ,/, [NP2

Subject
he/PRP NP2

Subject] [VP2 was/VBD VP2] [P like/IN P] ,/, [NP3
Subject

he/PRP NP3
Subject] [ADJP totally/RB ADJP] [VP3 did/VBD VP3] n't/RB

,/, [NP4
Subject you/PRP NP4

Subject] [VP4 know/VB VP4] ?/.

Herron Tool I 16

EP41R Parser:

Parse tree for the most probable analysis:
Warning: skipped unknown token "'t" at pos 57

segment
 NP
 noun phrase(plur, third, nom)
 adverb
 LEX_ADVB
 LADVB
 ADVB
 "and so"
 noun phrase(plur, third, nom)
 noun part(sing, third, nom)
 noun group(sing, third, nom)
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "billy"
 coordinator
 LEX_CON(coo)
 CON(coo)
 ","
 noun phrase(sing, third, nom)
 noun part(sing, third, nom)
 noun group(sing, third, nom)
 pers pron(sing, third, nom)
 LEX_PERSPRON(sing, third, nom)
 PERSPRON(sing, third, nom)
 "he"

total number of parsings 3 (max 1)
total scan time 0.014
total parse time 0.003

total number of parsings 0 (max 1)
total scan time 0.014
total parse time 0.003

total number of parsings 0 (max 1)
total scan time 0.014
total parse time 0.004

segment
 sentence
 order
 VOC phrase(sing, secnd)
 verb group(trav, none, none, sing, secnd)
 verb form(trav, none, none, sing, secnd)
 LEX_VERBI(none, trav)
 VERBI(none, trav)
 "like"
 OC phrase(trav, none, none)
 particle(none)
 C phrase(none)
 opt circumstances

total number of parsings 1 (max 1)
total scan time 0.014
total parse time 0.004

total number of parsings 0 (max 1)

Herron Tool I 17

total scan time 0.014
total parse time 0.004

segment
 NP
 noun phrase(sing, third, nom)
 noun part(sing, third, nom)
 noun group(sing, third, nom)
 pers pron(sing, third, nom)
 LEX_PERSPRON(sing, third, nom)
 PERSPRON(sing, third, nom)
 "he"

total number of parsings 1 (max 1)
total scan time 0.014
total parse time 0.005

total number of parsings 0 (max 1)
total scan time 0.014
total parse time 0.005

segment
 sentence
 order
 VOC phrase(sing, secnd)
 verb group(trav, none, none, sing, secnd)
 verb form(trav, none, none, sing, secnd)
 LEX_VERBI(none, trav)
 VERBI(none, trav)
 "like"
 OC phrase(trav, none, none)
 particle(none)
 C phrase(none)
 opt circumstances

total number of parsings 1 (max 1)
total scan time 0.014
total parse time 0.005

total number of parsings 0 (max 1)
total scan time 0.014
total parse time 0.005

segment
 NP
 noun phrase(sing, third, nom)
 noun part(sing, third, nom)
 noun group(sing, third, nom)
 pers pron(sing, third, nom)
 LEX_PERSPRON(sing, third, nom)
 PERSPRON(sing, third, nom)
 "he"
 rel phrase(acc)
 subject(plur, third)
 NP(plur, third, nom)
 noun phrase(plur, third, nom)
 adverb
 LEX_ADVB
 LADVB
 ADVB
 "totally"
 noun phrase(plur, third, nom)
 noun part(plur, third, nom)
 noun group(plur, third, nom)
 noun kernel(plur)
 LEX_NOUN(plur)
 LNOUN(plur)

Herron Tool I 18

 NOUN(plur)
 "didn"
 coordinator
 LEX_CON(coo)
 CON(coo)
 ","
 noun phrase(NUMB, secnd, nom)
 noun part(NUMB, secnd, nom)
 noun group(NUMB, secnd, nom)
 pers pron(NUMB, secnd, nom)
 LEX_PERSPRON(NUMB, secnd, nom)
 PERSPRON(NUMB, secnd, nom)
 "you"
 verb group(trav, none, none, plur, third)
 verb form(trav, none, none, plur, third)
 LEX_VERBI(none, trav)
 VERBI(none, trav)
 "know"
 pref PP(none)
 opt circumstances

total number of parsings 2 (max 1)
total scan time 0.014
total parse time 0.006

total number of parsings 0 (max 1)
total scan time 0.014
total parse time 0.006

total number of parsings 0 (max 1)
total scan time 0.014
total parse time 0.006

Connexor machinese for English (syntax tree output)

Herron Tool I 19

 # Text Baseform Syntactic relation Syntax and morphology

1 And and cc:>0 @CC %CC CC
2 so so @ADVL %EH ADV
 @AD-A> %E> ADV
3 Billy billy @NH %NH N NOM SG
 @PCOMPL-S %NH N NOM SG
 @OBJ %NH N NOM SG
 @SUBJ %NH N NOM SG
4 , ,

5 he he subj:>6 @SUBJ %NH PRON PERS NOM SG3
6 goes go main:>0 @+FMAINV %VA V PRES SG3
7 , ,

8 like like @+FMAINV %VA V PRES
9 , ,

10 he he subj:>11 @SUBJ %NH PRON PERS NOM SG3
11 was be @+FMAINV %VA V PAST
12 like like ha:>11 @ADVL %EH PREP
13 , ,

14 he he subj:>16 @SUBJ %NH PRON PERS NOM SG3
15 totally totally man:>20 @ADVL %EH ADV
16 did do v-ch:>20 @+FAUXV %AUX V PAST
17 n't not neg:>16 @ADVL %EH NEG-PART
18 , ,

19 you you @SUBJ %NH PRON PERS NOM
 @<P %NH PRON PERS NOM
 @PCOMPL-S %NH PRON PERS NOM

20 know know @-FMAINV %VA V INF
21 ? ?

22 <p> <p>

Herron Tool I 20

7. You don't say.

Memory-based shallow parser demo:

Tagger output

You/PRP do/VBP n't/RB say/VB ./.

Chunker output
[NP You/PRP NP] [VP do/VBP n't/RB say/VB VP] ./.

Subject/Object Detector output

[NP1
Subject You/PRP NP1

Subject] [VP1 do/VBP n't/RB say/VB VP1] ./.

EP41R Parser:

Parse tree for the most probable analysis:
Warning: skipped unknown token "'t" at pos 7

segment
 sentence
 statement
 simple statement
 SVOC phrase
 opt circumstances
 subject(NUMB, secnd)
 NP(NUMB, secnd, nom)
 noun phrase(NUMB, secnd, nom)
 noun part(NUMB, secnd, nom)
 noun group(NUMB, secnd, nom)
 pers pron(NUMB, secnd, nom)
 LEX_PERSPRON(NUMB, secnd, nom)
 PERSPRON(NUMB, secnd, nom)
 "you"
 VOC phrase(NUMB, secnd)
 verb group(trav, none, to, NUMB, secnd)
 LEX_AUXV(NUMB, secnd)
 AUXV(NUMB, secnd)
 "don't"
 infinitive(trav, none, to)
 verb form(trav, none, to, infi)
 LEX_VERBI(to, trav)
 VERBI(to, trav)
 "say"
 OC phrase(trav, none, to)
 particle(none)
 C phrase(to)
 opt circumstances
 period
 "."

Herron Tool I 21

Compare with “You do not say”:

Parse tree for the most probable analysis:
segment
 sentence
 statement
 simple statement
 SVOC phrase
 opt circumstances
 subject(NUMB, secnd)
 NP(NUMB, secnd, nom)
 noun phrase(NUMB, secnd, nom)
 noun part(NUMB, secnd, nom)
 noun group(NUMB, secnd, nom)
 pers pron(NUMB, secnd, nom)
 LEX_PERSPRON(NUMB, secnd, nom)
 PERSPRON(NUMB, secnd, nom)
 "you"
 VOC phrase(NUMB, secnd)
 verb group(trav, none, to, NUMB, secnd)
 LEX_AUXV(NUMB, secnd)
 AUXV(NUMB, secnd)
 "do"
 infinitive(trav, none, to)
 adverb
 LEX_ADVB
 LADVB
 ADVB
 "not"
 infinitive(trav, none, to)
 verb form(trav, none, to, infi)
 LEX_VERBI(to, trav)
 VERBI(to, trav)
 "say"
 OC phrase(trav, none, to)
 particle(none)
 C phrase(to)
 opt circumstances
 period
 "."

Connexor machinese for English (syntax tree output)

Herron Tool I 22

 # Text Baseform Syntactic relation Syntax and morphology

1 You you subj:>2 @SUBJ %NH PRON PERS NOM
2 do do v-ch:>4 @+FAUXV %AUX V PRES
3 n't not neg:>2 @ADVL %EH NEG-PART
4 say say main:>0 @-FMAINV %VA V INF
5 . .

6 <s> <s>

8. Government is number.

Memory-based shallow parser demo:

Tagger output

Government/NN is/VBZ number/NN ./.

Chunker output
[NP Government/NN NP] [VP is/VBZ VP] [NP number/NN NP] ./.

Subject/Object Detector output

[NP1
Subject Government/NN NP1

Subject] [VP1 is/VBZ VP1] [NP1NP-PRD
number/NN NP1NP-PRD] ./.

Herron Tool I 23

EP41R Parser:

Parse tree for the most probable analysis:
segment
 sentence
 statement
 simple statement
 SVOC phrase
 opt circumstances
 subject(sing, third)
 NP(sing, third, nom)
 noun phrase(sing, third, nom)
 noun part(sing, third, nom)
 noun group(sing, third, nom)
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "government"
 xP phrase(sing, third)
 copula(sing, third)
 to be(sing, third)
 LEX_TOBE(sing, third)
 TOBE(sing, third)
 "is"
 predicate
 noun phrase(sing, third, nom|acc)
 noun part(sing, third, nom|acc)
 noun group(sing, third, nom|acc)
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "number"
 period
 "."

Connexor machinese for English (syntax tree output)

Herron Tool I 24

 # Text Baseform Syntactic relation Syntax and morphology

1 Government government subj:>2 @SUBJ %NH N NOM
2 is be main:>0 @+FMAINV %VA V PRES SG3
3 number number comp:>2 @PCOMPL-S %NH N NOM
4 . .

5 <s> <s>

9. Short-lived like a machine that is used but not good enough whilst promising to be
better, an enduring work must be built like a machine full of shortcomings.

Memory-based shallow parser demo:

Tagger output

Short-lived//JJ like/IN a/DT machine/NN that/WDT is/VBZ used/VBN
but/CC not/RB good/JJ enough/RB whilst//JJS promising/JJ to/TO
be/VB better/RB ,/, an/DT enduring/VBG work/NN must/MD be/VB
built/VBN like/IN a/DT machine/NN full/JJ of/IN shortcomings/NNS ./.

Chunker output

[ADJP Short-lived//JJ ADJP] {PNP [Prep like/IN Prep] [NP a/DT
machine/NN NP] PNP} [NP that/WDT NP] [VP is/VBZ used/VBN VP]
but/CC not/RB [ADJP good/JJ enough/RB ADJP] [NP whilst//JJS
promising/JJ NP] [VP to/TO be/VB VP] [ADVP better/RB ADVP] ,/,
[NP an/DT enduring/VBG work/NN NP] [VP must/MD be/VB
built/VBN VP] {PNP [Prep like/IN Prep] [NP a/DT machine/NN NP]
PNP} [ADJP full/JJ ADJP] {PNP [Prep of/IN Prep] [NP
shortcomings/NNS NP] PNP} ./.

Subject/Object Detector output

[ADJP Short-lived//JJ ADJP] {PNP [P like/IN P] [NP a/DT machine/NN
NP] PNP} [NP1

Subject that/WDT NP1
Subject] [VP1 is/VBZ used/VBN VP1]

but/CC not/RB [ADJP good/JJ enough/RB ADJP] [NP2
Subject whilst//JJS

promising/JJ NP2
Subject] [VP2 to/TO be/VB VP2] [ADVP better/RB

ADVP] ,/, [NP3
Subject an/DT enduring/VBG work/NN NP3

Subject] [VP3
must/MD be/VB built/VBN VP3] {PNP [P like/IN P] [NP a/DT
machine/NN NP] PNP} [ADJP full/JJ ADJP] {PNP [P of/IN P] [NP
shortcomings/NNS NP] PNP} ./.

Herron Tool I 25

EP41R Parser:

Parse tree for the most probable analysis:
segment
 sentence
 statement
 simple statement
 SVOC phrase
 opt circumstances
 circumstance
 adjective
 LEX_ADJE(abso)
 LADJE(abso)
 ADJE(abso)
 "short-lived"
 opt circumstances
 circumstance
 PP
 PP(like)
 opt adverbs
 LEX_PREPOS(like)
 PREPOS(like)
 "like"
 noun phrase(sing, third, dat)
 noun part(sing, third, dat)
 article(sing)
 LEX_ART(sing)
 ART(sing)
 "a"
 noun group(sing, third, dat)
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "machine"
 opt circumstances
 subject(sing, third)
 NP(sing, third, nom)
 noun phrase(sing, third, nom)
 noun part(sing, third, nom)
 noun group(sing, third, nom)
 pers pron(sing, third, nom)
 LEX_PERSPRON(sing, third, nom)
 PERSPRON(sing, third, nom)
 "that"
 xP phrase(sing, third)
 copula(sing, third)
 to be(sing, third)
 LEX_TOBE(sing, third)
 TOBE(sing, third)
 "is"
 predicate
 pred adjectives
 pred adjective
 adjective
 LEX_ADJE(abso)
 LADJE(abso)
 ADJE(abso, to)
 "used"
 coordinator
 LEX_CON(coo)
 CON(coo)
 "but"
 pred adjectives
 pred adjective
 adjective
 adverb
 LEX_ADVB
 LADVB
 ADVB

Herron Tool I 26

 "not"
 adjective
 LEX_ADJE(abso)
 LADJE(abso)
 ADJE(abso)
 "good"
 opt circumstances
 circumstance
 adverb
 LEX_ADVB
 LADVB
 ADVB
 "enough"
 opt circumstances
 circumstance
 subordinator
 LEX_CON(sub)
 CON(sub)
 "whilst"
 simple statement
 SVOC phrase
 opt circumstances
 circumstance
 adjective
 LEX_ADJE(abso)
 LADJE(abso)
 ADJE(abso)
 "promising"
 opt circumstances
 circumstance
 purpose
 "to"
 LEX_TOBE(infi)
 TOBE(infi)
 "be"
 predicate
 pred adjectives
 pred adjective
 adjective
 LEX_ADJE(comp)
 LADJE(comp)
 ADJE(comp)
 "better"
 opt circumstances
 comma
 ","
 opt circumstances
 subject(sing, third)
 NP(sing, third, nom)
 noun phrase(sing, third, nom)
 noun part(sing, third, nom)
 article(sing)
 LEX_ART(sing)
 ART(sing)
 "an"
 noun group(sing, third, nom)
 noun kernel(sing)
 premodifiers
 premodifier
 adjective
 PROMOTION PRICE
 participle(trav, none, none, prpl)
 verb form(trav, none, none, prpl)
 LEX_VERBG(none, trav)
 VERBG(none, trav)
 "enduring"
 rest premodifiers
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)

Herron Tool I 27

 "work"
 copula(sing, third)
 to be(sing, third)
 LEX_AUXV(sing, third)
 AUXV(sing, third)
 "must"
 opt adverbs
 LEX_TOBE(infi)
 TOBE(infi)
 "be"
 participle(trav, none, from|on|into|in, papl)
 verb form(trav, none, from|on|into|in, papl)
 LEX_VERBP(from|on|into|in, trav)
 VERBP(from|on|into|in, trav)
 "built"
 pref PP(from|on|into|in)
 agent
 opt circumstances
 opt circumstances
 circumstance
 PP
 PP(like)
 opt adverbs
 LEX_PREPOS(like)
 PREPOS(like)
 "like"
 noun phrase(sing, third, dat)
 noun part(sing, third, dat)
 article(sing)
 LEX_ART(sing)
 ART(sing)
 "a"
 noun group(sing, third, dat)
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "machine"
 opt circumstances
 circumstance
 adverb
 LEX_ADVB
 LADVB
 ADVB
 "full"
 opt circumstances
 circumstance
 PP
 PP(of)
 opt adverbs
 LEX_PREPOS(of)
 PREPOS(of)
 "of"
 noun phrase(plur, third, dat)
 noun part(plur, third, dat)
 noun group(plur, third, dat)
 noun kernel(plur)
 LEX_NOUN(plur)
 LNOUN(plur)
 NOUN(plur)
 "shortcomings"
 opt circumstances
 period
 "."

Herron Tool I 28

Connexor machinese for English (syntax tree output):

Herron Tool I 29

 # Text Baseform Syntactic relation Syntax and morphology

1 Short-lived short-lived subj:>2 @SUBJ %NH A ABS
2 like like main:>0 @+FMAINV %VA V PRES
3 a a det:>4 @DN> %>N DET SG
4 machine machine obj:>2 @OBJ %NH N NOM SG
5 that that subj:>6 @SUBJ %NH <Rel> PRON
6 is be v-ch:>7 @+FAUXV %AUX V PRES SG3
7 used use mod:>4 @-FMAINV %VP EN
8 but but cc:>7 @CC %CC CC
9 not not cc:>7 @ADVL %EH NEG-PART

10 good good @PCOMPL-S %NH A ABS
11 enough enough ad:>10 @<AD-A %<E ADV
12 whilst whilst tmp:>13 @ADVL %EH ADV WH
13 promising promise tmp:>23 @-FMAINV %VA ING
14 to to pm:>15 @INFMARK> %AUX INFMARK>
15 be be obj:>13 @-FMAINV %VA V INF
16 better good comp:>15 @PCOMPL-S %NH A CMP
17 , ,

18 an an det:>20 @DN> %>N DET SG
19 enduring enduring attr:>20 @A> %>N A ABS
20 work work subj:>21 @SUBJ %NH N NOM SG
21 must must v-ch:>22 @+FAUXV %AUX V AUXMOD
22 be be v-ch:>23 @-FAUXV %AUX V INF
23 built build @-FMAINV %VP EN
24 like like ha:>23 @ADVL %EH PREP
25 a a det:>26 @DN> %>N DET SG
26 machine machine pcomp:>24 @<P %NH N NOM SG
27 full full mod:>26 @<NOM %N< A ABS
28 of of mod:>27 @<NOM-OF %N< PREP
29 shortcomings shortcoming pcomp:>28 @<P %NH N NOM PL
30 . .

31 <p> <p>

Herron Tool I 30

10. During the automatic customization (or training) of MSR-MT (see figure below),
pairs of corresponding source and target sentences are parsed to produce graph-like
structures called Logical Forms (LFs).

Memory-based shallow parser demo:

Tagger output

During/IN the/DT automatic/JJ customization//NN (/(or/CC training/NN
)/) of/IN MSR-MT//NNP (/(see/VB figure/NN below/IN)/) ,/,
pairs/NNS of/IN corresponding/JJ source/NN and/CC target/NN
sentences/NNS are/VBP parsed//VBN to/TO produce/VB graph-like//JJ
structures/NNS called/VBD Logical//JJ Forms//NNS (/(LFs//NNP)/) ./.

Chunker output

{PNP [Prep During/IN Prep] [NP the/DT automatic/JJ
customization//NN NP] PNP} (/(or/CC [NP training/NN NP])/) {PNP
[Prep of/IN Prep] [NP MSR-MT//NNP NP] PNP} (/([VP see/VB VP]
[NP figure/NN NP] [Prep below/IN Prep])/) ,/, [NP pairs/NNS NP]
{PNP [Prep of/IN Prep] [NP corresponding/JJ source/NN and/CC
target/NN sentences/NNS NP] PNP} [VP are/VBP parsed//VBN to/TO
produce/VB VP] [NP graph-like//JJ structures/NNS NP] [VP
called/VBD VP] [NP Logical//JJ Forms//NNS NP] (/([NP LFs//NNP
NP])/) ./.

Subject/Object Detector output

{PNP [P During/IN P] [NP the/DT automatic/JJ customization//NN NP]
PNP} (/(or/CC [NP training/NN NP])/) {PNP [P of/IN P] [NP MSR-
MT//NNP NP] PNP} (/([VP1 see/VB VP1] [NP1

Object figure/NN
NP1

Object] [P below/IN P])/) ,/, [NP2
Subject pairs/NNS NP2

Subject] {PNP [P
of/IN P] [NP corresponding/JJ source/NN and/CC target/NN
sentences/NNS NP] PNP} [VP2 are/VBP parsed//VBN to/TO
produce/VB VP2] [NP2

Object graph-like//JJ structures/NNS NP2
Object] [VP3

called/VBD VP3] [NP3
Object Logical//JJ Forms//NNS NP3

Object] (/([NP
LFs//NNP NP])/) ./.

Herron Tool I 31

EP41R Parser:

Parse tree for the most probable analysis:
Warning: skipped unknown token "training)" at pos 39

Warning: skipped unknown token "below)" at pos 71

Warning: skipped unknown token "(LFs)" at pos 195

total number of parsings 0 (max 1)
total scan time 0.049
total parse time 0.000

segment
 NP
 noun phrase(sing, third, CASE)
 noun part(sing, third, CASE)
 article(sing)
 LEX_ART(sing)
 ART(sing)
 "the"
 noun group(sing, third, CASE)
 noun kernel(sing)
 premodifiers
 premodifier
 adjective
 LEX_ADJE(abso)
 LADJE(abso)
 ADJE(abso)
 "automatic"
 rest premodifiers
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "customization"

total number of parsings 1 (max 1)
total scan time 0.049
total parse time 0.000

total number of parsings 0 (max 1)
total scan time 0.049
total parse time 0.000

total number of parsings 0 (max 1)
total scan time 0.049
total parse time 0.001

total number of parsings 0 (max 1)
total scan time 0.049
total parse time 0.001

total number of parsings 0 (max 1)
total scan time 0.049
total parse time 0.001

segment
 sentence
 statement
 simple statement
 SVOC phrase

Herron Tool I 32

 opt circumstances
 subject(plur, third)
 NP(plur, third, nom)
 noun phrase(plur, third, nom)
 noun part(sing, third, nom)
 noun group(sing, third, nom)
 noun kernel(sing)
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "figure"
 coordinator
 LEX_CON(coo)
 CON(coo)
 ","
 noun phrase(plur, third, nom)
 noun part(plur, third, nom)
 noun group(plur, third, nom)
 noun kernel(plur)
 LEX_NOUN(plur)
 LNOUN(plur)
 NOUN(plur)
 "pairs"
 postmodifiers
 postmodifier
 PP(of)
 opt adverbs
 LEX_PREPOS(of)
 PREPOS(of)
 "of"
 noun phrase(plur, third, dat)
 noun part(plur, third, dat)
 noun group(plur, third, dat)
 noun kernel(plur)
 premodifiers
 premodifier
 adjective
 LEX_ADJE(abso)
 LADJE(abso)
 ADJE(abso)
 "corresponding"
 rest premodifiers
 noun kernel(plur)
 premodifiers
 premodifier
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "source"
 rest premodifiers
 coordinator
 LEX_CON(coo)
 CON(coo)
 "and"
 premodifiers
 premodifier
 LEX_NOUN(sing)
 LNOUN(sing)
 NOUN(sing)
 "target"
 rest premodifiers
 noun kernel(plur)
 LEX_NOUN(plur)
 LNOUN(plur)
 NOUN(plur)
 "sentences"
 rest postmodifiers
 copula(plur, third)
 to be(plur, third)
 LEX_TOBE(plur, third)
 TOBE(plur, third)

Herron Tool I 33

 "are"
 participle(trav, none, none, papl)
 verb form(trav, none, none, papl)
 LEX_VERBP(none, trav)
 VERBP(none, trav)
 "parsed"
 pref PP(none)
 agent
 opt circumstances
 circumstance
 purpose
 "to"
 infinitive(trav, none, none)
 verb form(trav, none, none, infi)
 LEX_VERBI(none, trav)
 VERBI(none, trav)
 "produce"
 OC phrase(trav, none, none)
 object
 noun phrase(plur, third, acc)
 noun part(plur, third, acc)
 noun group(plur, third, acc)
 noun kernel(plur)
 premodifiers
 premodifier
 adjective
 LEX_ADJE(ATTR)
 LADJE(ATTR)
 robust ADJE(ATTR)
 hyphenated form
 "graph-like"
 rest premodifiers
 noun kernel(plur)
 LEX_NOUN(plur)
 LNOUN(plur)
 NOUN(plur)
 "structures"
 participle(trav, none, none, papl)
 verb form(trav, none, none, papl)
 LEX_VERBP(none, trav)
 VERBP(none, trav)
 "called"
 pref PP(none)
 agent
 opt circumstances
 resultative part
 NP(acc)
 noun phrase(plur, third, acc)
 noun part(plur, third, acc)
 noun group(plur, third, acc)
 noun kernel(plur)
 premodifiers
 premodifier
 adjective
 LEX_ADJE(abso)
 LADJE(abso)
 ADJE(abso)
 "logical"
 rest premodifiers
 noun kernel(plur)
 LEX_NOUN(plur)
 LNOUN(plur)
 NOUN(plur)
 "forms"
 particle(none)
 C phrase(none)
 opt circumstances
 opt circumstances
 period
 "."

Herron Tool I 34

total number of parsings 13 (max 1)
total scan time 0.049
total parse time 0.009

Connexor machinese for English (syntax tree output):

Herron Tool I 35

Text Baseform Syntactic relation Syntax and morphology

1 During during @ADVL %EH PREP
2 the the det:>4 @DN> %>N DET
3 automatic automatic attr:>4 @A> %>N A ABS
4 customization customization pcomp:>1 @<P %NH N NOM SG
5 ((
6 or or cc:>5 @CC %CC CC
7 training training @APP %NH N NOM SG
 @A> %>N N NOM SG
8))
9 of of mod:>4 @<NOM-OF %N< PREP

10 MSR-MT msr-mt pcomp:>9 @<P %NH N NOM SG
11 ((
12 see see mod:>10 @+FMAINV %VA V IMP
13 figure figure obj:>12 @OBJ %NH N NOM SG
14 below below ad:>13 @ADVL %EH ADV
15))
16 , ,
17 pairs pair @OBJ %NH N NOM PL
 @<P %NH N NOM PL

18 of of mod:>17 @<NOM-OF %N< PREP
19 corresponding correspond pcomp:>18 @<P-FMAINV %VA ING
20 source source cc:>22 @A> %>N N NOM SG
21 and and cc:>22 @CC %CC CC
22 target target attr:>23 @A> %>N N NOM SG
23 sentences sentence subj:>24 @SUBJ %NH N NOM PL
24 are be v-ch:>25 @+FAUXV %AUX V PRES
25 parsed parse @-FMAINV %VP EN
26 to to pm:>27 @INFMARK> %AUX INFMARK>
27 produce produce cnt:>25 @-FMAINV %VA V INF
28 graph-like graph-like attr:>29 @A> %>N A ABS
29 structures structure obj:>27 @OBJ %NH N NOM PL
30 called call mod:>29 @-FMAINV %VP EN
31 Logical logical attr:>32 @A> %>N A ABS
32 Forms form obj:>30 @OBJ %NH N NOM PL
33 ((
34 LFs lfs mod:>32 @NH %NH <?> N NOM SG
35))
36 . .
37 <p> <p>

Herron Tool I 36

ANALYSIS

The ten test sentences reveal some of the challenges of the three tested parsers. Some
features tested include:

• Ambiguity, local and global
• Well-formed nonsense
• Ill-formed sentence
• Misspellings
• Language acts
• Machine-generated text
• Non-sequitur/ tr verb used as int v.
• Deeply embedded clauses
• Technical jargon
• Parentheticals

The Connexor parser did an excellent job on the global ambiguity example (sentence 1) –
It determined that the duck in “made her duck” was the infinitive verb form, not the noun
duck. It did guess that “Flying” in Flying planes” is a present participle modifying the
noun “planes.” (in Connexor-speak, that’s a “premodifier of a nominal.” The EP41R
fared poorly, deciding early on that “planes” was a verb. The MBT tagger performed
somewhere in the middle: “duck” is a noun and flying somehow is a noun yet it did
capture “made” as a verb. As for local ambiguity (example 2), all three parsers perform
adequately. The parsers perform differently with respect to verb tense: Connexor
assumes the verb is past tense while MBT assumes it is present. The EP41R does not
appear to indicate any tense information. While I think in text it is more likely that the
verb is past instead of present tense, there is no easy way to choose one or the other. The
fact that Connexor picks the more likely choice may be of interest.

I expected that all three parsers would perform well with example 3, though the EP41R
places “drink” as a noun. It begins to become apparent that the EP41R “jumps to
conclusions:” it decides what part of speech a word is before inspecting the words
following it, and somehow decides that “ghosts” is a verb instead of a noun, the more
likely possibility. Inspection of later words would have cleared this up by showing other
possibilities for verbs. The other two parsers parse the example correctly.

Since example 4 is an ill-formed statement, the point of interest here surrounds handling
of “bad grammar”: does the parser try to force a working structure, and if it does not,
does it somehow elegantly represent the point of difficulty? Both the MBT and the
EP41R assume the sentence is well-formed and treat it accordingly, in a way that seems
“correct.” Yet the Connexor gets it right: not only does it capture the ill-formed-ness, but
it represents the ill-formed structure in a reasonable way, namely by separating the phrase
“to home” from the well-formed “Sally is going probably.” Other “erroneous” sentences,
examples 5 and 6, were perhaps a bit too unfair. I should not have expected any of the
parsers to know how to parse misspellings or inarticulate speech, and none of them did
know. I did hope that at least one would try to guess at a version with the misspellings
repaired.

Herron Tool I 37

Example 7 is an excellent example of a non-sequitur expressive speech act that is more
frequently though not exclusively found in speech rather than text. What surprised me
was something I was not looking for: the EP41R had no idea what the negation
contraction was. The Connexor and MBT perform well at handling the example, though
I question whether it should not show the fact that the transitive verb “say” is fine in an
intransitive form.

Example 8 was a test borne from plain curiosity about machinic-language. The MBT
and Connexor both perform quite well: each performs consistently from the example to
on the more obvious but similarly structured “I am woman.” I find little surprise that the
EP41R parsed the example correctly given that it was so simple.

Examples 9 and 10 tested the parsers’ abilities to handle long sentences with deeply
embedded phrases, parentheticals, antiquated language, and jargon. These two examples
undoubtedly posed a large number of difficult problems: all of the parsers were expected
to fail on all examples. I found it interesting how the Connexor failed to handle the
phrase “but not good enough.” I tested a number of examples to locate the problem: “I
am good enough,” “I am not good enough,” “I am new and good enough, “I am new but
good enough” all parse perfectly well, yet “I am new but not good enough” fails just as it
does in the present example: “good enough” is split off, thus revealing that the system
fails to handle negated embedded phrases. These two examples were on the whole much
too difficult even for the human to understand reliably well, and the embedding was too
deep, thus making it too difficult for the parsers to recognize even where the divide
between the main NP and VP should be. . I was surprised that all three recognized the
word “whilst.”

It seemed clear from the very start that the Connexor would outperform the other parsers,
and that EP41R would follow behind the other two. Sentence 1 was in my estimation the
best test of current parsers: it was a moderately difficult test that required some
understanding of embedded phrases and handling both multiple verbs-looking words and
multiple meanings. Ambiguity seems to continue to be a focus area of parsing research
and for good reason: it is one of the features of language that seems to run contrary to
logic-based divide-and-conquer paradigms. At the same time it is a semantic feature that
can be resolved by co-occurrence frequencies with unambiguous terms in the same
sentence: the sentence can be its own context. Ambiguity might be thought of as a
rudimentary form of a language problem that requires resolution on some level:
misspellings, embedded phrases, ill-formed-ness, nonsense, technical jargon,
parentheticals, can all be treated as decision nodes connected to multiple possibilities. It
seems no surprise that the performance of the three parsers ranked over the ten sentences
the same as they did with the first example.

I would like to see parsers offer multiple versions of sentence parsings—I’d like them to
show their decisions and rejects. To wit, if a sentence is ambiguous when taken out of
context, and the ambiguity indicates two possible readings of that sentence< I’d like to

Herron Tool I 38

see that parser show both instead of merely picking one. Such possibilities could be
represented in a tree with nodes representing decision points. I would also like to see, in
the spirit of representing multiple alternatives, a parser handle misspellings and represent
possibilities with possible correct spellings. None of the parsers even attempted to handle
misspelled words. Finally I hope to see a NLP parser that may be able to better handle
text representations of dialogue and other more ‘realistic” examples of language.

